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The potential of a charge distribution due to a lattice of point charges may be evaluated by the 
classical multipole expansion method. The leading terms in the resultant expressions are just those 
used in some of our previous calculations [1-3]. In addition, for cases where the leading terms vanish 
because of the effect of orthogonality of the basis functions upon the Mulliken expansion (this being 
especially serious in the case of a one-centre charge distribution), we have derived the first non- 
vanishing term, involving (z~[rlxv >. In other cases it may be necessary to proceed to still higher 
multipole terms before a non-zero contribution is obtained. The entire procedure is formulated in 
such a way that it can be easily applied to LCAO-MO calculations for polyatomic ions in ionic 
lattices. 

Comments on the Approximate Calculation of Lattice Potential 

In  a series of  studies on the effect of  ionic lattices on the electronic structures 
of  po lya tomic  ions [1-3] ,  it is assumed that  the contr ibut ions of  the point-charge 
lattice to the Hami l ton ian  of  the system under  considerat ion are via the matrix 
elements of  the form 

" V  1 z Q  + Z  0 
(1) 

where a and b denote  the centres of  the two atomic orbitals Xu and Z~ 
respectively, and Suv is the overlap integral between them. The summat ion  2 
is over all point  charges Q of  the same type th roughou t  the lattice external to 
the system, raz represents the distance between a and the lattice point  labelled 2. 
Physically this expression asserts that  the interaction between the charge 
distribution ~ab= g~*X~ and the lattice of point  charges may  be represented 
by the Madelung  potentials at the orbital centres, i.e. the potential  of  an extended 
charge distr ibution Oab has been replaced by that  of  a point. Therefore we shall 
refer to Eq. (1) as the point potential approximat ion.  It is the purpose  of  this 
note to show that  this approximat ion  simply represents the leading term in a 
classical mult ipole expansion. For  the purpose of  discussion, it is convenient  to 
differentiate two types of  charge distributions. 



370 R.D. Brown and B. W. N. Lo: 

i) One-Centre Charge Distribution 
Here we shall consider 0a, arising from two orbitals centred at the same 

point a, where a set of Cartesian axes is placed. Let r3  ̀be the position vector of a 
general lattice point with charge Q, and P an electron with variable position 
vector r (Fig. 1). The matrix element of Eq. (1) may be written, 

~buv = Q ~ ~ G(r3`, r) 0(r) dz (2) 
3. 

1 
where G(r3`, r ) -  [ rz - r~  is the familiar Green's function in elementary electro- 

statics. Here the suffix a is dropped for there is no ambiguity in the choice of 
origin. If the point charge Q lies completely outside of the charge distribution 
Q(r), Eq. (2) may be replaced by a multipole expansion [4, 5]. But this condition 
is not strictly fulfilled in our case, as 0(r) is thought to extend over the entire space 
including the point occupied by Q. However, the majority of the charge density 
does concentrate at regions close to the origin a, so that we may write Eq. (2) 
as a Taylor's series about  the origin, 

~ {  8G(r~,r) r=o qSuv = Q G(rz, 0) ~ o(r) d'c + Z ~a I Q(r) ct dz 
ct 

(3) 
y.T1 t~2 G(r3̀'0o~ ~fl r) r=o j1 + ~ ~ o(r) aft dz +... 

~, fl etc. = x ,  y ,  z .  

Rearranging the terms, we get 

{ r3̀  
1 1 (4) 

+ -~ <)~u 13rr -- Ir2lz~) : 2 (3 r3`rx -- Ir2)/r5 +'" "} 
3` J 

where I is the unit dyadic. Hence q~,~ is approximated by the interacting 
potentials of the various multipole moments of 0(r) and the corresponding 
derivatives of G(r3`, r). The first term in (4) is just the point potential approxi- 
mation used in [23. 

0 

Fig. 1. Interaction between the point charge Q and a one-centre charge distribution 0.. 
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ii) Two-Centre  Charge  Dis tr ibut ion 

To arrive at the type of expression used in [2, 3], the two-centre charge 
distribution 0ah is first approximated by the sum of two "one-centre charge 
distributions using the Mulliken method [6], and then the same type of derivation 
as above is applied: 

+(z~l rb l )~)"  rb~] 1 ~ 2 a . raxrax- - l raz  

where rax and rbx (x = (empty)  or 2) are vectors referring to centres a and b as 
origin respectively, and where we have assumed that the basis atomic orbitals 
are normalized. The first square bracket is just the point potential approximation 
used in I-2, 3]. 

A similar expression may be obtained if Ruedenberg's approximation is 
used for the two-centre charge distribution; however we prefer to take a different 
approach. The charge distribution 0,b is expanded as a point multipole about 
the midpoint c of the two orbital centres a and b. Following similar arguments, 
we have 

1 

1 ~ 3rc,  rcz -- Ir~5 
+ 3rcr -Irc lZb: 

rc2 
} (6) 

where c is now chosen as the origin of the vectors r c and rc~ etc. 
From the preceding discussion, it is clear that the point potential approxi- 

mation employed in [1-3] does give a reasonable estimate of the lattice contri- 
bution, but may lead to erroneous values if the leading term in (4) or (5) vanishes 
because of <Z,[ Xv) = 0 (by virtue of the orbital symmetry or otherwise). In such 
cases the next higher non-vanishing term should be used. 

If the full Eq. (4) and (6) are used, only a few terms need be calculated because 
these expressions converge rapidly. When the lattice potential is calculated in this 
manner, it will be referred to as the multipole potential approximation. The 
validity of this approximation depends on the extent to which the condition of 
non-overlapping of Qab and Q has been fulfilled. It should be pointed out that 
this method is equivalent to the common practice in crystal field calculations, 
where the function G(ra, r) is first replaced by a harmonic polynomial before 
integration [7]. Here we have formulated the procedure in such a way that it is 
easily applicable to L C A O - M O  calculations. Eq. (4) and (6) as they stand are 
quite general and may be used for different types of atomic functions, 
(e.g. Gaussian or exponential). A more accurate approach has been developed 
for charge distributions arising from products of STO's [8]. 
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